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Rosen's bimetric theory of gravitation, when equipped with a flat background 
metric, is known to be realized as a harmonic mapping of Minkowski spacetime 
into a certain homogeneous space. This paper develops and exploits these facts 
to provide four classes of  explicit solutions to Rosen's field equations. These 
four classes form the elements from which more general solutions may be formed 
by a type of  superposition. It is also shown how spherical gravitational waves 
may be explicitly built into these solutions. 

1. I N T R O D U C T I O N  

In Stoeger et aL (1985) we made a detailed calculation of the curvature 
of  what we called the harmonic mapping space of Rosen's (1974) bimetric 
theory of gravity, following an earlier model of  DeWitt (1967). Our interest 
in this theory was the fact that the field equations of  Rosen were those of 
a harmonic map between pseudo-Riemannian manifolds, as pointed out 
earlier by Stoeger (1983). However, our paper  exploited neither the harmonic 
character of  the map nor the fact that the harmonic mapping space is a 
globally affine symmetric space. This paper  addresses itself to these aspects, 
establishing a firm basis for further exploitation of  Rosen's theory. 

The classical theory of  harmonic maps,  which is well developed in the 
context of  Riemannian manifolds, does not carry over in toto to our situation, 
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since our manifolds carry indefinite metrics. For example, there is no 
maximum principle; hence, local existence/global uniqueness theorems true 
for harmonic maps on Riemannian manifolds do not carry over to our case. 
It is necessary to develop the theory of " rank one"  harmonic maps begun 
by Sampson and reworked here, mutatis mutandis, in the context of  pseudo- 
Riemannian manifolds. 

Our adaptation of Sampson's  theorem says that if (M, g) and (N, h) 
are pseudo-Riemannian manifolds and if ~ b : M ~  N is a harmonic map 
having a rank one differential, it can always be factored as & = o-o ~0 so 
that 4~ is a real-valued harmonic function, while o- does not have to be 
totally geodesic, i.e., the image of o- in N does not have to be a geodesic, 
and the gradient of ~b does not have to avoid the isotropic subspaces of  its 
domain. I f  it does, i.e., if its gradient is nonnull, then this forces o- to be a 
geodesic. This decomposit ion gives us a means of finding four classes of  
solutions to Rosen's field equations by applying the well-understood theory 
of the wave equation to ~O and of geodesics in symmetric spaces to or. Among 
these solutions is Rosen's solution. Finally to round out the theory, we give 
an example due to Lemaire for which o- is not a geodesic. 

In order to produce the geodesics in the harmonic mapping space, it 
is useful to observe, with Misner (1978), that the harmonic mapping space 
is a homogeneous space, which, when equipped with a certain metric, is a 
globally affine symmetric space. Here we merely exploit well-known results. 
However, one point should be mentioned. As many have observed, the 
harmonic equations do not depend upon the metric in the range space, but 
only on a connection. In making the curvature calculations in Stoeger et 
al. (1985), we did use a metric (already mentioned above), which we called 
the DeWitt metric (cf. DeWitt, 1967). Yet this is in some sense superfluous, 
since the relevant structure is the canonical connection of a globally affine 
symmetric space. 

However, if one wishes to define an energy density of a map and derive 
the field equations from a variational principle, then a metric becomes 
essential. Thus, we thought it informative to show which DeWitt metrics 
are naturally obtained, which are invariant under given transformations of  
the symmetric space, and which therefore possess the unique canonical 
symmetric space connection as their Levi-Civita connection. 

In Section 2 we develop the relevant facts about rank one harmonic 
maps. In Section 3 we establish the symmetric space structure of  the 
harmonic mapping space, equipped with any of several compatible DeWitt 
metrics. We apply these results in Section 4 to obtain four broad classes of  
solutions to Rosen's field equations. Gravitational waves arise simply 
because a harmonic function ~O on Minkowski spacetime is in fact a solution 
to the three-dimensional wave equation. 
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2. RANK ONE HARMONIC MAPS 

We are guided by Eells and Lemaire (1984) for conceptualization and 
notation. All manifolds and maps are smooth (i.e., C~). By metric we mean 
a pseudo-Riemannian metric, a subclass of which are the Riemannian 
metrics. 

We denote by a pair (M, g) a manifold M with a metric g. The signature 
of g is given by a pair of  nonnegative integers (p, q), where p is the number 
of negative eigenvalues of g and q its number of positive eigenvalues. We 
always consider that this metric g induces on M the canonical Levi-Civita 
connection gV. 

We are interested in maps 05 : (M, g)--> (N, h) that are harmonic. The 
differential of 05, d05, is considered a section in the bundle TM*| 6 -1TN, 
where TM* is the dual tangent bundle of M and 05-'TN is the pullback 
by & of the tangent bundle of N, TN, to the manifold M, i.e., d~ is a 1-form 
on M with values in TN. The metrics g and h induce a metric on TM*| 
eS-1TN, while the connections g v and h v induce a connection V on TM*| 
4) -1TN that leaves this induced metric invariant. We denote this induced 
metric of the section d05 by lld0511. We can consider 11d05112 as the trace (i.e., 
contraction) of the (0, 2) covariant tensor 05"h, the pullback of the h metric 
to M, raised to a (1, 1) mixed tensor by the metric g on M. The quantity 
e(~b) --�89 d05112 is the energy density of 05. The energy of  ~b is the (extended) 
real number 

E(05) = r e(05)vg 
, )  M 

where vg is the volume element of the metric g. A map 4~ is harmonic if q5 
is an extremal of this energy function, i.e., for any smooth section Y of 
05-1TN, the vertical derivative of E at 05 in the direction Y, (DvE)(6), 
gives (DYE)(05)=0. This is equivalent to satisfying the Euler-Lagrange 
equation z(05)=0, where 7(05) is the tension field of 05, which is a section 
of 05-1TN, given by 7(05)=trY(d05). In this expression V is the induced 
connection on TM*| resulting in a section of TM*| 
05-1TN, and the trace is taken after raising to a mixed tensor by the metric g. 

In local coordinates 7(05) is given as follows. Let (x ~) be local coordin- 
ates in M and (yA) in N. Let the Christoffet symbols for the connections 

M k N X be F~j and Fg~. Then 

. .  0 2 ~  A MFk.  0~)A .[_ N F A  0(]~ 'u" 0 ~  v 

7*(6)=gVoxi Ox; -U Ox k - , v  Ox i Ox ~ 

In the applications we make of E(cb) and r(~b), since M is not 
necessarily compact, it is possible for E(05) = +oe. However, since variation 
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is essentially a local phenomenon, variations in E at ~b by Y are calculated 
using compactly supported sections, resulting in well-defined values for 
( DyE )( ~b ). 

Since dO is a linear map of fibres of T M  to fibres of TN, one can 
define the concept of rank of ~b at each point of M as the rank of  the linear 
map d~b between linear spaces. If this rank is constant for all points of M, 
then we have the rank of  ~b on M. 

We are interested in the decomposition of harmonic maps. In this 
context we need the concept of a totally geodesic map (Eells and Lemaire, 
1984, pp. 16-17). A map O: (M, g) ~ (N, h) is totally geodesic iff VdO =0.  
This is equivalent to &-preserving connections or to 0-preserving geodesics 
(including the parametrization). Now suppose we have the decomposition 

(M, g) , (N, h) 

If  0 is harmonic and or is totally geodesic, then 4~ is harmonic. 
We exploit this decomposition in the case when ~b is of rank one. 

Sampson (1978) studied rank one harmonic maps between Riemannian 
manifolds. Examining this work and making the modifications always 
necessary to treat the pseudo-Riemannian case, we state the following: 

Theorem 2.1. Let (M, g) and (N, h) be pseudo-Riemannian manifolds 
with M connected. Suppose 4~ : M ~ N is harmonic and of rank one on M. 

(a) There exists a factorization & = o-o ~ such that 0 is a harmonic 
function into N. 

(b) If  d~0 is nonnull, then the image of o ~ is a geodesic of N. 

Proof. (a) The rank one hypothesis on q5 allows us to affirm the 
following. Locally we have coordinate charts U of  M with coordinates (x ~) 
and coordinate charts V of N with coordinates (y~) such that & ( V ) c  V 
and 4~[u has its image mapping onto the first coordinate yl = 41 (&~ = 0, a # 
1). Taking this coordinate as the open interval Icr, this determines a surjective 
map 0v : U ~ Iv and a bijection o-v : lv ~ & (U),  giving the factorization &IF = 
O" U o ~U" 

In these coordinates the harmonic equations for & become 

/ j {  02(~ 1 O,.-A 1 Or/~ 1 0 ~ 1 ~  
--Mr~ v" -~NVl ~ (1) 

0 = ~  kax~ax j ~Uax k -  ~ "  ox' axJ/  

0 = ij Nr , ,~  OC~ 1 OC~ 1 A # 1 
S .~11 OX i OX j , 
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Since ff)l ~" 4'U, the first equation becomes 

,j( 
O = g  \ a ~ x '  MF/~ - -  - -  Ox k u cgx i Oxj j 

Now changing only the first coordinate in V, we seek 

(y, y 2 , . . . ,  y , )  __) (z(y),  y 2 ) , . . . ,  y , )  

N--A where z(y) is a function of  the first coordinate only. Letting F~,~ be the 
Chirstoffel symbols in the new coordinates, we know 

r,,= r,, 

This results in an ordinary differential equation, which for given initial 
data has a unique solution for z such that NF111 = O. Thus, reparametrizing 
the interval Iu by z, we obtain the equation 

2 a 

O=g kaxi Ox j l i j  oxk)  

I f  IU is now given its canonical connection, this says that q'u is a 
harmonic function. Uniqueness and connectedness then gives the global 
factorization q5 = cr o 4', with 4' a harmonic function into R. 

(b) In order that c~u(Iu)= ~ ( U )  (with parameter  z) be a geodesic, it 
is sufficient that N-A Fll = 0, h # 1 (which in our case is equivalent to NF~I = 0, 
h # 1). But equations (1) are equivalent to 

Nr~ 04'u 04'u 
0 = g  -110x i Ox j,  h # l  

Thus, if d4' is nonnull, this gives NF)I = 0, h # 1. We conclude that 
ou( Iu )  = 4)(U) is a geodesic in N. [] 

We observe the following. For rank one harmonic maps 4~, in the 
Riemannian case it is always true that ~b = o- o 4' with 4' harmonic and the 
image of cr a geodesic in N. Thus, the sufficient conditions for a composition 
of maps to be harmonic are also in this case necessary conditions. However,  
in the pseudo-Riemannian case this is not true. We can always conclude 
that 4' is harmonic (and this independent of  the null condition on d4'), but 
that the image of tr need not be a geodesic in N. L. Lemaire (personal 
communicat ion) gives the following example. Let M and N both be R 2 
with Minkowski metric. Define q5: M -~ N by 

~b(x, y) = (u, v) = (exp(x - y ) ,  expZ(x - y ) )  
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Now 4) is harmonic and of rank one. In this case 0 : E a ~  (0, oe) is 0(x, y) = 
s = e x p ( x - y ) .  Now 0 is harmonic and dO is null. The map o-: (0, co)~ R 2 
is o-(s)= (u, v ) =  (s, s2), which is not a geodesic in ~2 with Minkowski 
metric. Indeed, with this 0 and any or, 4~ = o-o 0 is harmonic. This 
phenomenon generalizes into the following: 

Corollary 2.2. Let (M, g) and (N, h) be pseudo-Riemannian manifolds 
with M connected. Suppose 4~ : M ~ N is of rank one on M. Let ~b have 
the factorization ~b = o-o 0. If  0 is harmonic and d0 is null, then 0 is 
harmonic. 

Proof As in the proof  of Theorem 2.1, rank one allows us to write the 
tension of 4~]u = O'u ~ 0u  as 

o \Ox,Ox j Fo Ox k] 

"'sPa 04~1 0~bl A # I  
r a ( 4 [ u ) = g  'j X l l  Ox--~i OX j '  

Since 4~ l =  0u, the harmonic hypothesis on 0 makes rl(4~[u)= 0, and 
the null condition on dO makes ~'~(4~[u)=0, h r 1. [] 

We also make some comments about the energy density e(q~). In our 
local coordinates of Theorem 2.1, where the parameter for o-u is s, we have 

2e(4,lu) = 2 ( ~ o  0v) = (gO OO~ 
Ox' Ox j ] 

If  dO = 0, then e(~b)= 0. If  dO r 0, then e(4~)= 0 means the image of 
4, which is a geodesic in N by Theorem 2.1, is an isotropic geodesic in N. 
Finally, if e(q~) r 0, then dO is not null and the image of 4~ is a nonisotropic 
geodesic in N. 

3. THE SYMMETRIC SPACE STRUCTURE OF S(p,  q) AND 
METRICS ON S(p, q) 

Our interest in this paper is to give rank one solutions to Rosen's 
equations for his theory of gravitation. [See Stoeger et al. (1985) for a 
discussion of this theory.) His vacuum equations (homogeneous equations) 
are harmonic maps from R 4 with a Minkowski metric to S(1, 3), the set of 
all symmetric, nondegenerate (0, 2) tensors with signature (1, 3) (1 negative, 
3 positive). Thus, following the conclusions of Section 2, we need to expose 
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the geodesic structure of  S(p, q), which now will mean the set of all 
symmetric, nonsingular matrices of  signature (p, q) (p negative, q positive) 
in GL(m, ~), m =p + q. We merely summarize standard well-known results 
in this section. 

I f  one analyzes the natural representation of GL(m, ~) on the (0, 2) 
tensors of  ~m, one finds the following action: 

GL(m, ~) x S(p, q)~ S(p, q) 

( k, g)~-~ kgk r 

where k r is the transpose of k. For reasons which appear  later, we will call 
this natural action the squaring action on S(p, q). We note the following: 
GL(m, ~) has two components ,  whose identity component  is GL+(m, ~). 
In our applications we cannot restrict this action to this connected com- 
ponent. As a consequence, in general we do not have an effective action 
even when m is odd, since Im and --Ira both give the identity transformation. 
The action is transitive, and the isotropy subgroup of the "canonical"  matrix 
in S( p, q), 

Eo,  0? i s ,  q = /q  

is by definition the pseudoorthogonal  group O(p, q). Thus, we have the 
following diffeomorphism: 

GL(m, N)/ O(p. q) -~ S(p, q) (2) 

[k] ~ klp, qk r 

where [k] is the coset containing k. The coset action of GL(m, R) goes over 
to the squaring action on S(p, q). We note that S(p, q) is connected. 

There is a natural symmetry o-p,q on GL(m, R), i.e., trp.q is a diffeomor- 
phism of GL(m, R) such that o-~,q = identity: 

crp, q: GL(m, R)~ GL(m, R) 

k ~ O-p,q(k) = Ip, q k r - ' I p ,  q 

where k T-1 denotes the transpose inverse of  k. Its fixed point set is O(p, q). 
Thus, there is an induced symmetry on GL(m,E)/O(p, q) which maps 
cosets [k] into cosets [o-v.q(k) ]. Using the diffeomorphism (2), we have a 
symmetry defined on S(p, q): 

so:S(p, q)~ S(p, q) 

g~'~ S o ( g )  = Ip, qg- l  lp, q 

with an isolated fixed point Ip, q. 
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Let gl(m, R) and so(p, q) be the Lie algebras of GL(m, R) and O(p, q), 
respectively, considered, if necessary, as sets of tangent vectors at the identity 
lm of GL(m, ~). We have a decomposition of gl(m, ~) as a direct sum of 
linear spaces 

gl(m, ~) = so(p, q)Gw 

The Lie algebra so(p, q) consists of all matrices of the form 

[A1 A2 r ]  

A = A2 A 4 J  

where A is blocked by p and q; A~ and A 4 a re  skew symmetric; and A= is 
arbitrary. The linear subspace ~o consists of all matrices of the form 

[z, -zq 
Z = Z e  Z4J 

where Z is also blocked by p and q; Z~ and Z 4 a r e  symmetric; and g 2 is 
arbitrary. Thus we have 

Ad(O(p,  q))w c w 

[so(p, q), ~o] c oJ 

The differential of crp, q decomposes the tangent space at the identity also 
into gl(m, R)= so(p, q)Ow, where so(p, q) is the +1 eigenspace and w the 
-1  eigenspace. Thus, 

[w, w] c so(p, q) 

This means that GL(m, R)/O(p, q) is a reductive homogeneous space in 
the sense of  Kobayashi and Nomizu (1969, Vol. II, p. 190). By Kobayashi 
and Nomizu (1969, Vol. II, p. 192)] there exists a canonical connection on 
GL(m,•)/O(p, q) which is invariant by GL(m, ~) by coset action, i.e., 
GL(M, 5~) is a group of affine transformations of this connection. Because 
of the symmetry condition, the symmetry is also an affine transformation, 
and thus GL(m,~)/O(p, q) with the canonical connection is a globally 
affine symmetric space, i.e., the torsion T = 0 and the covariant differential 
of the curvature VR--0 .  This connection is also complete. 

We note here that these results were explicitly calculated in Stoeger et 
aL (1985), where in addition the actual curvatures were determined. 

We now transfer this structure to S(p, q) by (2). Thus S(p, q) becomes 
a complete, globally affine symmetric space in which the symmetry and the 
elements of the group GL(m, ~) acting by the squaring action are affine 
transformations. 
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We wish to identify the geodesics in S(p, q). In GL(m, R)/O(p, q), 
from Kobayashi and Nomizu (1969, Vol. II, p. 231) we know the geodesics 
are of the form exp ( tZ ) .  [O(p, q)] for Z ~  to. In S(p, q) this translates to 
exp( tZ)Ip, q exp( tZ) r for geodesics starting at Ip, q in the direction ZIp, q + 
Ip, qz  ~. 

We now change perspective and consider S(p, q)= GL(m, R). Since 
Ip, qZ r = Zip, q, the geodesic reduces to exp( 2tZ) Ip, q and the direction reduces 
to 2Zip, q. (The appearance of the factor 2 in these expressions is the motive 
for naming the squaring action as was done above.) We can conclude that 
one-parameter subgroups in GL(m,•), exp(tzr) ,  starting at Im in the 
direction Z r ~  to, left-translated by Ip, q, give geodesics in S(p, q) starting 
at Ip, q in the direction Ip, qZ r. Thus, we have reduced the study of the globally 
affine symmetric space S(p, q) to how S(p, q) sits in GL(m, R). 

We gather these results in the following: 

Geodesic Proposition. The geodesic cr in S(p, q) through Ip, q, with initial 
tangent X an arbitrary symmetric matrix, is 

o'( t) = Ip, q exp( tlp, qX) 

In particular, we exploit the decomposition of GL(m,R)= 
SLY(m, R) �9 R+Im, where the elements of SL• R) are all (rn x m) matrices 
of det = +1 and R + is the set of the positive real numbers. We let SS(p, q) = 
SL• R) c~ S(p, q). We have S(p, q) = SS(p, q) �9 R+Im, and SS(p, q) is 
also a globally affine symmetric space by the same arguments as above. 
Considering SS(p, q) = SL• R), we identify one-parameter subgroups in 
SL• R), exp(tZ),  starting at I,, in the direction Z ~  o3, where o3 is the 
set of  trace = 0 matrices of w, and the Lie algebra of SLY(m, R), sl(m, R) = 
so(p, q)• dJ. These one-parameter subgroups are left-translated by Ip.q to 
give geodesics in SS(p, q) that are thus geodesics in S(p, q) also. In other 
words, SS(p, q) is a totally geodesic submanifold of S(p, q), as are all 
translates $S(p, q) �9 Aim, A ~ R + (of. Kobayashi and Nomizu, 1969, Chapter 
XI.4). 

We remark that if S(p, q) is given a pseudo-Riemannian metric G such 
that the squaring action of  GL(m, R) is also an isometry with respect to G, 
then the Levi-Civita connection ~ on S(p, q) coincides with the canonical 
connection on S(p, q) as a globally affine symmetric space (of. Kobayashi 
and Nomizu, 1969, Vol. II, p. 232). This allows us to derive these harmonic 
maps from a variational principle on a Lagrangian. We exhibit a set of 
metrics on S(p, q). Any metric g on M naturally induces a metric on 
T~ TM) by 

G(to1| I, to2| ) = g(to~, to2)g(7/1, n 2) 
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Using a coordinate chart (x ~) on M, this determines the coordinates to 
which the matrices S(p, q) were referenced, i.e., coordinates (g~0) deter- 
mined by g = ~ 0  g,~odx'~| t3. Now the natural isomorphism between 
T(S(p, q))g and S2~ m) given by this coordinate system translates this 
induced metric to a metric in S(p, q) expressed in coordinates as 

G = ~ g~g~Pdg,~t~ | dg~p 
c~Ap 

This can be expressed by a trace form. For X, Y E T(S(p, q))g, 

Gg(X, Y)=tr(g-lXg-ly) 

Note that g-iX and g-1 y belong to to. 
We now exploit the fact S(p, q)=SS(p,  q). R+Im. We choose the 

following explicit diffeomorphism: 

S(p, q) ~ SS(p, q) • ~+ 

g-> (g, h) 

where g = Ig[-1/mg, h = [gl 1/m, and Ig] = Idet gl- Introducing a product metric 
G on SS(p, q ) x R  § we have for g = h r  X = A X + p I r  and Y=AfZ§ 

= tr(g_13~ I ~_) +_1 t r (A- 'p, Im) tr (h-'p21~) 
m 

This depends on the fact that g-l){, ~-1 ~'e 03, i.e., tr(~-l.~) =t r (g  -1 s  = O. 
This motivates a natural extension of this metric to an arbitrary metric 

on the R + part. For X, Y~  T(S(p, q)')g, 

G~(X, Y) = a tr(g-~Xg -~ Y) + b tr(g-~X) tr(g -1 Y) 

for/z, ~ e T(S(p, q))* in the cotangent bundle of S(p, q), 

Gg(r ~/) = c tr(g,g,)  + d tr(g~) tr(g,) 

with 

b 1 b 1 
c=a -~, a#O, d -  # 

a a+mb'  a rn 

This effectively merely adjusts the metric on the ~+ part, since 

a+mb 
Gg(X, Y) = a tr(g-x)~g - '  r  tr (A-1p11,,,) tr(h-lp2Im) 

111 

What is important is that  these metrics on S(p, q) are invariant by the 
symmetry and by the squaring action. Thus, the Levi-Civita connection that 
each one defines coincides with the unique canonical connection on S(p, q) 
as a symmetric space (cf. Kobayashi and Nomizu, 1969, Vol. p. 232). 
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We indicate the signature of these metrics. It is sufficient to seek an 
orthogonal basis for T(S(p ,  q))ip.q. A basis for the •+ part is Ip, q and 

Gtp, q ( Ip,q, Ip, q) = m (  a + m b  ) 

Thus, depending on the choices made for a and b, the contribution of the 
R + part to the signature could be either one positive or one negative. It is 
easy to construct a basis of diagonal matrices for the SS(p,  q). They 
contribute to the signature either 

(pq, � 8 9  a > 0  

( � 8 9  a < 0  

In particular, for S(1, 3) with a = 1 and b = - 1 ,  the signature on the ~+ 
part is one negative, while on the SS(I ,  3) part, the signature is (3, 6). 

4. FOUR CLASSES OF SOLUTIONS TO ROSEN'S FIELD 
EQUATIONS 

In this section we apply the results of Sections 2 and 3. Let us first 
relate them to Rosen's static, spherically symmetric solution to his field 
equations, namely 

ds 2 = g~ dx i dx j 

where g = (go) is the matrix 

g = d i a g ( - e x p ( - 2 m l / r ) ,  exp(2rn2/r), 

exp(2m2/r),  exp(2rn2/r)) 

Here r is the spatial distance (from the origin) of the point at which g is 
evaluated. This solution is rank one, since the matr ix  function g factors 
into the composition of the standing wave 

O = l / r  

with the geodesic in S(1, 3) 

o-(s) = d i a g ( - e x p ( - s m 0 ,  exp(sm2), exp(sm2), exp(sm2)) 

Here ml and m2 represent two masses. More abstractly, they are constants 
of  integration. In the notation of the geodesic proposition, one expresses 
o- a s  

~r(s) = I1,3 exp(sI1,3X) (3) 

where 

X = diag(rnl, m2, m2, rn2) 
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A slightly more general form which could be used would be 

X = diag(ml, mz, ms, m4) 

However, the spatial asymmetry in the use of four masses would correspond 
to an aspherical gravitational field. 

One has three other classes of geodesics that can be written down 
explicitly. We will use dt for dx ~ dx for dx 1, dy for dx 2, and dz for dxSl 
with which to express the line elements o f  the corresponding Lorentzian 
metrics that are the solutions of Rosen's field equations. Thus, for example, 
dt 2 m e a n s  (dx~ 2. 

We first write down the line element of the metric and then the 
corresponding value of  I1,3X to  be used in equation (3). The value of  ~b is 
that of the standing wave above, ff = 1/r. Later we shall replace ff with 
other solutions to the three-dimensional wave equation in order to introduce 
even horizons. 

Line element: 

(i) ds2= - ( 1 -  a /  r)dt2 + ( l + a/  r)dx2 + ( dy2 + dz2) 

Corresponding geodesic tangent vector in S(1, 3) (blank off-diagonal 
entries denote zeros): 

I a 

(Xi) 11'3X = 0 

0 

Line element: 

(ii) ds 2 = [-cos( lx /  r) + a/  lz sin(tz/r)]  dt 2 

+ [2b/lz sin(/z/r)]  dt dx 

+ [cos(/z/r)  + a/lz sin(/z/r)]  dx 2 

+ (ay 2 + az 2) 

Geodesic tangent vector: 

- a  - b  

b a 
(Xii) I1,3 x = 

0 

0 

where b2> a:  and/x  = (b 2 -  a2) 1/2. 
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Line element: 

(iii) ds 2 = [ - c o s h ( / x / r )  + a / ~ sinh(/z/r)]  dt 2 

+ [2b/tz s inh(/z / r ) ]  dt dx 

+ [cosh(/~/r)  + a/l~ s inh(/z / r ) ]  dx 2 

+(dy2+  dz 2 ) 

Geodesic tangent vector: 

I 
-2  

(Xiii) I13X = a 
�9 0 

0 

where a 2 >  b 2 and ~ = (a2-b2)  1/z. 
There is one other class, that for which the line element is 

(iv) ds 2 = - e x p ( m / r )  dt2+exla(m/r) dx 2 

+exp(p / r )  dyZ+exp(q/r)  dz 2 

Geodesic tangent vector: 

m 

m 
(Xiv) I1,3X = 

P 
q 

Since a matrix of  the form (Xiv) commutes with matrices of  each of 
the previous three forms, one may add it to each, the resulting exponential 
matrices being the product  .of each of the exponentials of  the component  
matrices. For example, adding a matrix of  the form of  (Xiv) to one of  the 
form (Xi) and exponentiating the result (and as usual composing with the 
standing wave ~O = 1/r) yields a solution to Rosen's  field equations of  the 
form 

(v) ds2= exp(m/  r)[ ( - l  + a/  r) dt2 + ( l + a/ r) dx 2] 

+ exp ( p / r )  dy z + exp(q / r )  dz 2 

To avoid the evident asymmetry in this solution, one must take m = p = q. 
Notice that with m = p = q, this would be a static axially symmetric solution 
without any angular momentum,  but with an event horizon at r = a, where 
the speed of  light falls to zero. 
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The most  general form that I1,3X c a n  take, after rotating space coordin-  
ates, would  be 

al - b  

(Xvi) I13 X = b a 2 12 
' C p tl 

n q 

It is easy to see that if two out of  the three o f  b, c, or n is zero or c is zero, 
then this latter I1,3X by a further rotat ion of  space coordinates  may  be put  
into one o f  the three forms: (Xi) + (Xiv), (Xii) + (Xiv), or (Xiii) + (Xiv). 
However ,  unless two out  o f  the three o f  b, c, or n is zero or  c is zero, it is 
not  clear what  the exponential  of  I1,3 X is. 

By replacing 0 = 1 / r  in each of  the above line elements by a nonstat ion-  
ary wave, one can obtain solutions to Rosen 's  field equations that  admit  
gravitational waves. By replacing ~b= 1/r in Rosen 's  static, spherically 
symmetric  solution with a t ime-dependent  ~b, one can obtain explicit spheri- 
cally symmetr ic  black holes that generate gravitational waves. It is not  hard 
to see how to provide solutions tp to the three-dimensional  wave equat ion 
that  yield event horizons that expand or  collpase. 

To preserve spherical symmetry,  it is necessary to give the solution ~b 
to the three-dimensional  wave equat ion in the form 

t~(t, x,y,  z) =f ( t ,  r ) / r  

where f ( t ,  u) is a solution to the one-dimensional  wave equat ion and r is 
the Eucl idean norm of  the space vector (x, y, z). For  example, if we take 
for f ( t ,  u) the funct ion 

f ( t ,  u) = 1 ~ ( u - a -  t )+ l / ( u - a +  t) 

then the Rosen static, spherically symmetric  solution becomes the time- 
dependent  solution 

ds 2 = e x p { -  m1(1 - a / r ) / [ ( r  - a)  2 - t 2] dt 2 

+ exp{m2(1 - a / r ) / [ ( r  - a) 2 - t2]}(dx2+ @2+ dz 2) 

which has an expanding event horizon at r - a = t. 
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